Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 282: 127640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350171

RESUMO

Antimicrobial peptides (AMPs) show promise as alternatives to traditional antibiotics for treating drug-resistant infections. Their adaptability and diverse sequence possibilities allow for rational design by modulating physicochemical determinants to achieve desired biological properties, transforming them into peptides for potential new therapies. Nisin, one of the best-studied AMPs, is believed to have potential to be used as a therapeutic, particularly against antibiotic-resistant bacteria. However, its instability in physiological conditions limits its use in clinical applications and pharmaceutical development. Exploration of new natural variants of nisin has uncovered diverse properties using different domains. Shuffling peptide modules can fine-tune the chemical properties of these molecules, potentially enhancing stability while maintaining or improving antimicrobial activity. In this study, hybrid AMPs were created by combining domains from three unique nisin variants, i.e. nisin A, cesin and rombocin, leading to the identification of a promising variant, named cerocin A, which harbours only 25 amino acids compared to the typical 31-35 amino acid length of nisin. Cerocin A demonstrates potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), approaching that of nisin itself. Cerocin A's mode of action involves a dual mechanism through the combination of two domains, consisting of a small ring/domain (6 amino acids) from the C-terminal end of rombocin attached to the preceding peptide of cesin, changing it from a bacteriostatic to a bactericidal peptide. Further mutation studies identified a new variant, cerocin V, with significantly improved resistance against trypsin degradation, while maintaining high potency. Importantly, cerocin V showed no undesired toxic effects on human red blood cells and remained stable in human plasma. In conclusion, we demonstrate that peptide construction using domain engineering is an effective strategy for manipulating both biological and physicochemical aspects, leading to the creation of novel bioactive molecules with desired properties. These constructs are appealing candidates for further optimization and development as novel antibiotics.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Nisina , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/genética , Bacteriocinas/farmacologia , Nisina/genética , Nisina/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Aminoácidos , Testes de Sensibilidade Microbiana
2.
Peptides ; 174: 171152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220092

RESUMO

Nisin serves as the prototype within the lantibiotic group of antimicrobial peptides, exhibiting a broad-spectrum inhibition against Gram-positive bacteria, including important food-borne pathogens and clinically relevant antibiotic-resistant strains. The gene-encoded nature of nisin allows for gene-based bioengineering, enabling the generation of novel derivatives. It has been demonstrated that nisin mutants can be produced with improved functional properties. Here, we particularly focus on the uncommon amino acid residues dehydroalanine (Dha) and dehydrobutyrin (Dhb), whose functions are not yet fully elucidated. Prior to this study, we developed a new expression system that utilizes the nisin modification machinery NisBTC to advance expression, resulting in enhanced peptide dehydration efficiency. Through this approach, we discovered that the dehydrated amino acid Dhb at position 18 in the peptide rombocin, a short variant of nisin, displayed four times higher activity compared to the non-dehydrated peptide against the strain Lactococcus lactis. Furthermore, we observed that in the peptides nisin and rombocin, the dehydrated amino acid Dha at residue positon 18 exhibited superior activity compared to the dehydrated amino acid Dhb. Upon purifying the wild-type nisin and its variant nisinG18/Dha to homogeneity, the minimum inhibitory concentration (MIC) indicated that the variant exhibited activity similar to that of wild-type nisin in inhibiting the growth of Bacillus cereus but showed twice the MIC values against the other four tested Gram-positive strains. Further stability tests demonstrated that the dehydrated peptide exhibited properties similar to wild-type nisin under different temperatures but displayed higher resistance to proteolytic enzymes compared to wild-type nisin.


Assuntos
Bacteriocinas , Lactococcus lactis , Nisina , Nisina/genética , Nisina/farmacologia , Aminoácidos/genética , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/química , Lactococcus lactis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...